1. Smith D R, Vier D C, Koschny T, et al. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Physical Review E, 2005, 71: 036617/1-9
2. Cheng Y Z, Yang H L, Cheng Z Z, et al. Perfect metamaterial absorber based on a split-ring-cross resontor. Applied Physics A, 2011, 102(1): 99-103
3. Liu W, Zhang H X, Wang H, et al. Design and analysis of quantized controllable doped left-handed materials. The Journal of China Universities of Posts and Telecommunications, 2011, 18(3): 99-104
4. Costa F, Monorchio A, Manara G. Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces. IEEE Transactions on Antennas and Propagation, 2010, 58(5): 1551-1558
5. Yang G Q, Hong W, Tang H J. A novel dual-band frequency selective surface based on the interlaced I-shape element. Chinese Journal of Radio Science, 2011, 26(6): 1069-1075 (in Chinese)
6. 6.Sun L K, Cheng H F, Zhou Y J, et al. Design of a lightweight magnetic radar absorber embedded with resistive FSS. IEEE Antennas and Wireless Propagation Letters, 2012, 11: 675-677
7. Huang L, Chowdhury D R, Ramani S, et al. A novel approach to further decrease the thickness of ultrathin perfect metamaterial absorbers. Proceedings of the 2012 International Workshop on Metamaterials, Oct 8-10, 2012, Nanjing, China. Piscataway, NJ, USA: IEEE, 2012: 3p
8. Costa F, Monorchio A. A frequency selective radome with wideband absorbing properties. IEEE Transactions on Antennas and Propagation, 2012, 60(6): 2740-2747
9. Landy N I, Sajuyigbe S, Mock J J , et al. Perfect metamaterial absorber. Physical Review Letters, 2008, 100: 207402/1-4
10. Ding F, Cui Y X, Ge X C, et al. Ultra-broadband microwave metamaterial absorber. Applied Physics Letters, 2012, 100: 103506/1-4
11. Micheli D, Pastore R, Apollo C, et al. Broadband electromagnetic absorbers using carbon nanostructure-based composites. IEEE Transactions on Microwave Theory and Techniques, 2011, 59(10): 2633-2646
12. Xiong H, Hong J S. An ulthin and broadband metamaterial absorber using multi-layer structures. Journal of Applied Physics, 2013, 114: 064109/1-5
13. Smith F C, Chambers B, Bennett J C. Calibration techniques for free space reflection coefficient measurements. IEE Proceedings-A: Science, Measurement and Technology, 1992, 139(5): 247-253
14. Sun J B, Liu L Y, Dong G Y, et al. An extremely broad band metamaterial absorber based on destructive interference. Optics Express, 2011, 19(22): 2115-21162
15. Ma Y, Chen Q, Grant J, et al. A terahertz polarization insensitive dual band metamaterial absorber. Optics Letters, 2011, 36(6): 945-947
16. Kern D J, Werner D H. A genetic algorithm approach to the design of ultra-thin electromagnetic bandgap absorbers. Microwave and Optical Technology Letters, 2003, 38(1): 61-64
17. Wang J, Chen Y T, Hao J M, et al. Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared. Journal of Applied Physics, 2011, 109: 074510/1-5 |